Tetrahedron Letters 49 (2008) 6631–6634

Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/00404039)

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Catalytic asymmetric synthesis of the docetaxel (Taxotere) side chain: organocatalytic highly enantioselective synthesis of esterification-ready a-hydroxy-b-amino acids

Pawel Dziedzic, Jan Vesely, Armando Córdova *

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden

article info

Article history: Received 3 August 2008 Revised 26 August 2008 Accepted 5 September 2008 Available online 11 September 2008

ABSTRACT

A highly enantioselective catalytic route to protected β -amino- α -hydroxy acids, such as the side chain of Taxotere, is presented. The organocatalytic asymmetric reactions between unmodified protected α oxyaldehydes and N-Boc-protected aryl imines give the corresponding compound with up to >19:1 dr and 99–99% ee.

- 2008 Elsevier Ltd. All rights reserved.

The β -amino- α -hydroxy acid moiety is a common structural component in a vast group of naturally occurring as well as pharmaceutically active molecules.¹ In this context, docetaxel (Taxotere), a synthetic derivative of paclitaxel (Taxol), which is one of the most outstanding cancer chemotherapeutic substances, contains a $(2R,3S)$ $(2R,3S)$ $(2R,3S)$ -phenylisoserine side chain.²

The importance of α -hydroxy- β -amino acid derivatives has inspired chemists to develop a number of methods for their preparation.^{1,3} Among them, Shibasaki and co-workers reported a fourstep synthesis of the Taxotere side chain based on a direct zinc organometallic complex-catalyzed Mannich reaction between an N-Boc imine and 2-hydroxy-2'-methoxyacetophenone.⁴

Recently, organocatalysis was added to the synthetic repertoire of the direct Mannich reaction[.5–7](#page-2-0) For example, we have reported amino acid-catalyzed Mannich reactions between protected α -oxyaldehydes, para-anisidine, and aldehydes (Eq. 1).⁸

The corresponding $N-p$ -methoxyphenyl (PMP)-protected α oxy-b-amino aldehydes are excellent precursors for the synthesis of α -hydroxy- β -amino acids. However, removal of the PMP group requires oxidative conditions, can be low yielding, and requires Boc protection as an additional step. Enders recently reported elegant examples of Mannich-type reactions between ketones and Boc imines. 9 List¹⁰ and our group¹¹ have also reported that aldehydes can be employed as donors in organocatalytic reactions with Boc imines. Moreover, we recently showed that proline catalyzes the highly enantioselective addition of α , β -unsaturated aldehydes to Boc imines[.12](#page-3-0) Based on our previous results and retro-synthetic analysis, we envisioned a short route to the important Taxotere side chain via an amino acid-catalyzed direct Mannich-type

Corresponding author. Tel.: +46 8 162479; fax: +46 8 154908.

E-mail addresses: [acordova@organ.su.se,](mailto:acordova@organ.su.se) acordova1a@netscape.net (A. Córdova).

reaction between protected a-oxyaldehydes and N-Boc-protected benzaldimine (Eq. 2).

responding α -oxy- β -amino aldehyde 3a in poor to good yields but with excellent diastereomeric ratios and ees (Table 1). 13 13 13

Herein, we report a highly enantioselective synthesis of the esterification-ready side chain of Taxotere (>19:1 dr, 99% ee). The reaction is a direct route to Boc-protected a-hydroxy-baminoaldehydes.

In an initial screen, we found that (S) -proline 4 and hydroxyproline 5 catalyzed the reaction between phenyl N-Boc-imine 1a (0.25 mmol) and tert-butyldimethylsilyl (TBS)-protected a-oxyaldehyde 2a (0.27 mmol) with high stereoselectivity to give the cor-

Table 1

Catalyst screen for the enantioselective reactions between 1a and $2a^a$

 (S) -Proline-catalyzed the formation of protected α -oxy- β -amino aldehyde 3a in 12-36% yield with >19:1 dr (syn: anti) and 99-99% ee in DMF, NMP, and CH₃CN, respectively, at 4° C (entries 1–3). The optically active aldehyde 3a was quite stable but was stored at -20 °C. The highest yield was obtained when CH₃CN was used as the solvent. Performing the catalytic reaction at room temperature increased the yield of 3a to 48% without affecting the stereoselectivity (entry 6). Inspired by these excellent results, we decided

N H

R

COOH

in the table.

Isolated yield of pure compound 3a.

 c Determined by ¹H NMR of the crude reaction mixture.

^d Determined by chiral-phase HPLC analysis. n.d. = not determined. TBS = tert-butyldimethylsilyl.

Direct organocatalytic asymmetric Mannich reactions between N-Boc-protected imines 1 and α -oxyaldehydes 2^{α}

^a Experimental conditions: A mixture of **1a** (0.25 mmol), α -oxyaldehyde **2** (0.27 mmol), and (R)-proline (20 mol %) in 1.0 mL of CH₃CN was stirred at room temperature.
^b Isolated yield of pure compound **3**.

 ϵ syn/anti ratio determined by ¹H NMR analysis.

 d Determined by chiral-phase HPLC analyses. TBS = tert-butyldimethylsilyl. Bn = benzyl.

Scheme 1. Reagents and conditions: (a) (R) -proline (20 mol %), CH₃CN, rt, 16 h, 60%; (b) NaClO₂, iso-butene, KHPO₄, t-BuOH/H₂O 2:1, 85%.

to investigate the catalytic asymmetric Mannich reaction between various N-Boc-protected imines 1 and different α -oxyaldehydes 2 ([Table 2\)](#page-1-0).^{[14](#page-3-0)} In order to achieve the same configuration (2R,3S) as that of the Taxotere side chain, (R) -proline was selected as the organocatalyst.

The (R)-proline-catalyzed Mannich reactions proceeded with excellent enantioselectivity, and the corresponding α -oxy- β -amino aldehydes ent-3a-ent-3d were obtained in good yields with 99% ee. To our delight, the reaction was highly syn-selective (>19:1 dr) when imine 1a was used as the acceptor (entries 1 and 2). In fact, this is the key transformation for the synthesis of the Taxotere side chain (Eq. [2\)](#page-1-0). For example, (R) -proline-catalyzed the asymmetric reaction between imine 1a and benzyl-protected α -oxyaldehyde 2b with high diastereo- and enantioselectivity to give the corresponding orthogonally protected α -oxy- β -amino aldehyde ent- $3b^{14}$ $3b^{14}$ $3b^{14}$ in 60% yield with >19:1 dr and 99% ee (entry 2). Moreover, the reactions were readily scaled up. Next, the α -oxy- β -amino aldehyde ent -3b was oxidized to the corresponding (2R,3S)-phenylisoserine (Taxotere) side chain $4b^{3g}$ in high yield (Scheme 1).^{[15](#page-3-0)} This reaction can also be performed as a one-pot operation.

Notably, the benzyl-protected β -amino- α -hydroxy acid **4b** is esterification-ready for reaction with 10-deacetylbaccatin III, an abundant natural product obtained from the yew tree, which after deprotection gives Taxotere (Eq. 3). $3g$

On the basis of the absolute configuration, we propose transition-state model I to account for the diastereo- and enantioselectivity of the (R) -proline-catalyzed formation of α -oxy- β -amino aldehydes 3 (Fig. 1). Hence, the (R) -proline forms an enamine with the aldehyde, which is attacked by the N-Boc-protected imine from its Re-face providing $(2R,3S)$ - β -amino- α -hydroxy acid derivatives. This is in accordance with the opposite established transition states of previously reported (S)-proline-catalyzed Mannich reactions^{5,6} with α -oxyaldehydes.^{[8](#page-3-0)}

In summary, we have reported a simple, highly enantioselective, organocatalytic asymmetric Mannich-type reaction with a-oxyaldehydes as nucleophiles and Boc-protected imines as acceptors. The corresponding orthogonally protected α -oxy- β -aminoaldehydes were formed in good yields with 99% ee. The importance of this transformation as an entry to the synthesis of α -hydroxy- β -amino acids was further exemplified by the highly stereoselective (>19:1 dr, 99% ee) synthesis of the esterificationready Taxotere side chain. Further elaboration of this novel

Figure 1. Transition-state model evoked to account for the enantioselectivity of the (R)-proline-catalyzed reactions.

transformation in total synthesis as well as mechanistic studies is ongoing in our laboratory.

Acknowledgments

We gratefully acknowledge the Swedish National Research Council and Carl-Trygger Foundation for financial support.

References and notes

- 1. (a) Juaristi, E.; Quintana, D.; Escalante, J. Aldrichim. Acta 1994, 27, 3; (b) Cardillo, G.; Tomasini, C. Chem. Soc. Rev. 1996, 29, 117; (c) Bergmeier, S. C. Tetrahedron 2000, 56, 2561.
- 2. For selected reviews on these compounds see: (a) Nicolaou, K. C.; Dai, W.-M.; Guy, R. K. Angew. Chem., Int. Ed. Engl. 1994, 33, 15; (b) Blechert, S.; Guénard, D.. In Brossi, A., Ed.; The Alkaloids, Chemistry and Pharmacology; Springer: Berlin, 1990; Vol. 39, p 195; (c) Potier, P.; Guénard, D.; Guéritte-Voegelein, F. Acc. Chem. Res. 1993, 26, 160.
- 3. For selected examples, see: (a) Rubin, A. E.; Sharpless, K. B. Angew. Chem., Int. Ed. 1997, 36, 2637; (b) Upadhya, T. T.; Sufalai, A. Tetrahedron: Asymmetry 1997, 8, 3685; (c) Hanessian, S.; Sancéau, J.-Y. Can. J. Chem. 1996, 74, 621; (d) Gennari, C.; Carcano, M.; Dongi, M.; Mongelli, N.; Vanotti, E.; Vulpetti, A. J. Org. Chem. 1997, 62, 4746; (e) Gou, D.-M.; Liu, Y.-C.; Chen, C.-S. J. Org. Chem. 1993, 58, 1287; (f) Ojima, I.; Habus, I.; Zhao, M.; Georg, G. I.; Jayasinghe, L. R. J. Org. Chem. 1991, 56, 1681; (g) Kanazawa, A. M.; Denis, J.-N.; Greene, A. E. J. Org. Chem. 1994, 59, 1238; (h) Denis, J.-N.; Correa, A.; Greene, A. E. J. Org. Chem. 1990, 55, 1957; (i) Montiel-Smith, S.; Cervantes-Mejía, V.; Dubois, J.; Guénard, D.; Guéritte, ; Sandoval-Ramírez, J. Eur. J. Org. Chem. 2002, 2260; (j) Kudyaba, I.; Raczko, J.; Jurczak, J. J. Org. Chem. 2004, 69, 2844. and references cited therein.
- 4. Matsunaga, S.; Yishida, T.; Morimoto, H.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 8777.
- 5. For reviews see: (a) Córdova, A. Acc. Chem. Res. 2004, 37, 102; (b) Rios, R.; Córdova, A. Amino Group Chemistry. In Ricci, A., Ed.; Wiley-VCH: Weinheim, 2008, Chapter 5, p 185; (c) Ting, A.; Schaus, S. E. Eur. J. Org. Chem. 2007, 5797.
- 6. For selected examples of the use of amino acids as catalysts see: (a) List, B. J. Am. Chem. Soc. 2000, 122, 9336; (b) Córdova, A.; Watanabe, S.-i.; Tanaka, F.; Notz, W.; Barbas, C. F., III. J. Am. Chem. Soc. 2002, 124, 1866; (c) Münch, A.; Wendt, B.; Christmann, M. Synlett 2004, 2751; (d) Zhuang, W.; Saaby, S.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2004, 43, 4476; (e) Fustero, S.; Jimenez, D.; Sanz-Cervera, J. F.; Sanchez-Rosello, M.; Esteban, E.; Simon-Fuentes, A. Org. Lett. 2005, 7, 3433; (f) Córdova, A.; Barbas, C. F., III. Tetrahedron Lett. 2002, 43, 7749; (g) Westermann, B.; Neuhaus, C. Angew. Chem., Int. Ed. 2005, 44, 4077; (h) Ibrahem, I.; Córdova, A. Tetrahedron Lett. 2005, 46, 3363; (i) Enders, D.; Grondal, C.; Vrettou, M.; Raabe, G. Angew. Chem., Int Ed. 2005, 44, 4079; (j) Cobb, A. J. A.;

Shaw, D. M.; Ley, S. V. Synlett 2004, 558; (k) Cobb, A. J. A.; Shaw, D. M.; Longbottom, D. A.; Gold, J. B.; Ley, S. V. Org. Biomol. Chem. 2005, 3, 84; (l) Ibrahem, I.; Córdova, A. Chem. Commun. 2006, 1760; (m) Ibrahem, I.; Casas, J.; Córdova, A. Angew. Chem., Int. Ed. 2004, 43, 6528; (n) Ibrahem, I.; Zou, W.; Casas, J.; Sundén, H.; Córdova, A. Tetrahedron 2006, 62, 357; (q) Rodriguez, B.; Bolm, C. J. Org. Chem. 2006, 71, 2888; (r) Ibrahem, I.; Zou, W.; Engqvist, M.; Xu, Y. Chem. Eur. J. 2005, 11, 7024; (s) Córdova, A. Synlett 2003, 1651; (t) Córdova, A. Chem. Eur. J. 2004, 10, 1987; (u) Hayashi, Y.; Tsuboi, W.; Ashimine, I.; Urushima, T.; Shoji, M.; Sakai, K. Angew. Chem., Int. Ed. 2003, 42, 3677; (v) Hayashi, Y.; Urushima, T.; Shoji, M.; Uchimary, T.; Shiina, I. Adv. Synth. Catal. 2005, 347, 1595.

- 7. For the use of organic catalysts see: (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566; (b) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356; (c) Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. J. Am. Chem. Soc. 2005, 127, 11256; (d) Wenzel, E. N.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964.
- 8. (a) Ibrahem, I.; Córdova, A. Tetrahedron Lett. 2005, 46, 2839; (b) Liao, W.-W.; Ibrahem, I.; Córdova, A. Chem. Commun. 2006, 674.
- 9. (a) Enders, D.; Grondal, C.; Vrettou, M. Synthesis 2006, 2155.
- 10. (a) Yang, J. W.; Stadler, M.; List, B. Angew. Chem., Int. Ed. 2007, 46, 609; (b) Yang,
- J. W.; Chandler, C.; Stadler, M.; Kampen, D.; List, B. Nature 2008, 452, 453.
- 11. Vesely, J.; Rios, R.; Ibrahem, R.; Córdova, A. Tetrahedron Lett. 2007, 48, 421. 12. Vesely, J.; Dziedzic, P.; Córdova, A. Tetrahedron Lett. 2007, 48, 6900.
- 13. Typical experimental procedure: To a stirred solution of imine 1a (1.0 equiv, 0.25 mmol) and aldehyde 2a (1.1 equiv, 0.27 mmol) in solvent (1.0 mL) at 4° C was added (S)-proline (20 mol %), and the resulting reaction mixture was stirred vigorously for the reported time. Next, the reaction mixture was directly loaded onto a silica-gel column and immediate chromatography (pentane/EtOAc-mixtures or toluene/EtOAc-mixtures) furnished the corresponding aldehyde $3a$: colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 9.70 (br s, 1H), $7.\overline{36} - 7.24$ (m, 5H), 5.43 (d, J = 8.0 Hz, 1H), 5.21 (d, J = 8.0 Hz, 1H), 4.22 (br s, 1H), 1.41 (s, 9H), 0.78 (s, 9H), -0.14 (s, 3H), -0.34 (s, 3H); ¹³C NMR

(100 MHz, CDCl₃): 201.7, 155.2, 139.5, 128.7, 127.8, 126.6, 81.7, 80.3, 55.6, 28.5, 25.8, -5.1 , -5.5 ; HRMS (ESI): calcd for [M+Na] (C₂₀H₃₃NO₄SiNa) requires m/z 402.2071, found 402.2074. The enantiomeric excess was determined by HPLC with an AD column n-hexane/i-PrOH = 98:2, λ = 220 nm), 0.5 mL/min; major enantiomer t_R = 16.6 min, minor enantiomer = 24.1 min; $[\alpha]_D^{25}$ – -10.5 (c) $1.0.$ CHCl₂).

- 14. Typical experimental procedure: To a stirred solution of imine 1a (1.0 equiv, 0.25 mmol) and aldehyde $2b$ (1.1 equiv, 0.27 mmol) in CH₃CN (1.0 mL) at room temperature was added (R)-proline (20 mol %). The reaction mixture was stirred vigorously for the reported time. Next, the reaction mixture was directly loaded on a silica-gel column, and immediate chromatography (pentane/EtOAc-mixtures or toluene/EtOAc-mixtures) furnished the corresponding aldehyde. ent-3b: colorless oil. ¹H NMR (400 MHz): δ 9.73-9.72 (m, 1H), 7.37–7.23 (m, 8H), 7.10–7.06 (m, 2H), 5.52 (br s, 1H), 5.24 (br s, 1H), 4.60 (d, J = 11.6 Hz, 1H), 4.39 (d, J = 11.6 Hz, 1H), 4.04 (br s, 1H), 1.40 (s, 9H); 13C NMR (100 MHz): 201.2, 155.2, 139.4, 136.7, 128.8, 128.7, 128.4, 128.3, 127.9, 126.8, 86.0, 80.3, 73.6, 54.3, 28.5; HRMS (ESI): calcd for [M+Na] $(C_{21}H_{25}NO_4Na)$ requires m/z 378.1676, found 378.1671. The enantiomeric excess was determined by HPLC with an AD column $(n$ -hexane/i-PrOH = 90:10, λ = 220 nm), 0.5 mL/min; major enantiomer t_R = 15.9 min, minor enantiomer = 28.2 min; $[\alpha]_D^{25}$ +29.0 (c 1.0, CHCl₃).
- 15. Preparation of acid 4b: To a solution of ent-3b (0.1 mmol) in chloroform (1 mL) , isobutene (0.1 mL), tert-butanol (0.4 mL), H_2O (0.2 mL), KH_2PO_4 (54.4 mg, 4.0 mmol), and NaClO₂ (36 mg, 4.0 mmol) were added sequentially at room temperature. After 16 h, the crude product was purified by column chromatography (pentane/EtOAc-mixtures) to afford 32 mg (85%) of the desired acid 4b; colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.19 (m, 8H), 7.04–7.00 (m, 2H), 5.80 (d, J = 8 Hz, 1H), 5.30 (d, J = 8.8 Hz, 1H), 4.70 (d
J = 10 Hz, 1H), 4.32 (d, J = 10 Hz, 1H), 4.20 (br s, 1H), 1.42 (s, 9H); ¹³C NMR (100 MHz, CDCl3): 173.4, 155.9, 139.5, 136.6, 128.8, 128.6, 128.2, 128.0, 127.8, 126.9, 80.6, 80.1, 73.2, 56.0, 28.5; HRMS (ESI): calcd for $[M+Na]$ (C₂₁H₂₅NO₅Na) requires m/z 394.1625, found 394.1635. $[\alpha]_D^{25}$ +19.0 (c 1.0, CHCl₃).