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A highly enantioselective catalytic route to protected b-amino-a-hydroxy acids, such as the side chain of
Taxotere, is presented. The organocatalytic asymmetric reactions between unmodified protected a-
oxyaldehydes and N-Boc-protected aryl imines give the corresponding compound with up to >19:1 dr
and 99–99% ee.

� 2008 Elsevier Ltd. All rights reserved.
The b-amino-a-hydroxy acid moiety is a common structural
component in a vast group of naturally occurring as well as phar-
maceutically active molecules.1 In this context, docetaxel (Taxo-
tere), a synthetic derivative of paclitaxel (Taxol), which is one of
the most outstanding cancer chemotherapeutic substances, con-
tains a (2R,3S)-phenylisoserine side chain.2
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The importance of a-hydroxy-b-amino acid derivatives has
inspired chemists to develop a number of methods for their prep-
aration.1,3 Among them, Shibasaki and co-workers reported a four-
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step synthesis of the Taxotere side chain based on a direct zinc
organometallic complex-catalyzed Mannich reaction between an
N-Boc imine and 2-hydroxy-2’-methoxyacetophenone.4

Recently, organocatalysis was added to the synthetic repertoire
of the direct Mannich reaction.5–7 For example, we have reported
amino acid-catalyzed Mannich reactions between protected
a-oxyaldehydes, para-anisidine, and aldehydes (Eq. 1).8

The corresponding N-p-methoxyphenyl (PMP)-protected a-
oxy-b-amino aldehydes are excellent precursors for the synthesis
of a-hydroxy-b-amino acids. However, removal of the PMP group
requires oxidative conditions, can be low yielding, and requires
Boc protection as an additional step. Enders recently reported ele-
gant examples of Mannich-type reactions between ketones and
Boc imines.9 List10 and our group11 have also reported that alde-
hydes can be employed as donors in organocatalytic reactions with
Boc imines. Moreover, we recently showed that proline catalyzes
the highly enantioselective addition of a,b-unsaturated aldehydes
to Boc imines.12 Based on our previous results and retro-synthetic
analysis, we envisioned a short route to the important Taxotere
side chain via an amino acid-catalyzed direct Mannich-type
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reaction between protected a-oxyaldehydes and N-Boc-protected
benzaldimine (Eq. 2).
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Herein, we report a highly enantioselective synthesis of the
esterification-ready side chain of Taxotere (>19:1 dr, 99% ee). The
reaction is a direct route to Boc-protected a-hydroxy-b-
aminoaldehydes.

In an initial screen, we found that (S)-proline 4 and hydroxypro-
line 5 catalyzed the reaction between phenyl N-Boc-imine 1a
(0.25 mmol) and tert-butyldimethylsilyl (TBS)-protected a-oxyal-
dehyde 2a (0.27 mmol) with high stereoselectivity to give the cor-
Table 1
Catalyst screen for the enantioselective reactions between 1a and 2aa
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1a: Ar = C6H5 2a (1.1 equiv)
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4
5

Entry Catalyst Time (h) Solvent

1 4 48 DMF
2 4 48 CH3CN
3 4 48 NMP
4 4 48 CHCI3

5 4 48 CH2CI2

6 4 16 CH3CN
7 5 16 CH3CN
8 4 48 Toluene

a Experimental conditions: A mixture of 1a (0.25 mmol), aldehyde 2a (0.50 mmol), and
in the table.

b Isolated yield of pure compound 3a.
c Determined by 1H NMR of the crude reaction mixture.
d Determined by chiral-phase HPLC analysis. n.d. = not determined. TBS = tert-butyldim

Table 2
Direct organocatalytic asymmetric Mannich reactions between N-Boc-protected imines 1
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Entry Ar X Product

1 Ph TBS ent-3a
2 Ph Bn ent-3b
3 4-MeC6H4 Bn ent-3c
4 4-MeOC6H4 Bn ent-3d

a Experimental conditions: A mixture of 1a (0.25 mmol), a-oxyaldehyde 2 (0.27 mmo
b Isolated yield of pure compound 3.
c syn/anti ratio determined by 1H NMR analysis.
d Determined by chiral-phase HPLC analyses. TBS = tert-butyldimethylsilyl. Bn = benzy
responding a-oxy-b-amino aldehyde 3a in poor to good yields but
with excellent diastereomeric ratios and ees (Table 1).13
(S)-Proline-catalyzed the formation of protected a-oxy-b-amino
aldehyde 3a in 12–36% yield with >19:1 dr (syn:anti) and 99–99%
ee in DMF, NMP, and CH3CN, respectively, at 4 �C (entries 1–3).
The optically active aldehyde 3a was quite stable but was stored
at �20 �C. The highest yield was obtained when CH3CN was used
as the solvent. Performing the catalytic reaction at room tempera-
ture increased the yield of 3a to 48% without affecting the stereose-
lectivity (entry 6). Inspired by these excellent results, we decided
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NH
Bocatalyst

0 mol%)

lvent, 48 h
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N
H

COOH

: R = H
: R = OH

Temperature (�C) Yieldb (%) drc eed (%)

4 12 >19:1 99
4 36 >19:1 >99
4 24 >19:1 99
4 Trace n.d. n.d.
4 Trace n.d. n.d.
rt 48 >19:1 99
rt 6 >19:1 95
4 Trace n.d. n.d.

catalyst (20 mol %) in 1.0 mL of solvent was stirred under the conditions displayed

ethylsilyl.

and a-oxyaldehydes 2a

Ar

O

H
OP

NH
Boc)-proline

0 mol%)

3CN, rt

ent-3

Time (h) Yieldb (%) drc eed (%)

40 56 >19:1 99
5 60 >19:1 99

16 56 3:1 99
16 52 9:1 99

l), and (R)-proline (20 mol %) in 1.0 mL of CH3CN was stirred at room temperature.

l.
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Scheme 1. Reagents and conditions: (a) (R)-proline (20 mol %), CH3CN, rt, 16 h, 60%; (b) NaClO2, iso-butene, KHPO4, t-BuOH/H2O 2:1, 85%.
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Figure 1. Transition-state model evoked to account for the enantioselectivity of the
(R)-proline-catalyzed reactions.
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to investigate the catalytic asymmetric Mannich reaction between
various N-Boc-protected imines 1 and different a-oxyaldehydes 2
(Table 2).14 In order to achieve the same configuration (2R,3S) as
that of the Taxotere side chain, (R)-proline was selected as the
organocatalyst.

The (R)-proline-catalyzed Mannich reactions proceeded with
excellent enantioselectivity, and the corresponding a-oxy-b-amino
aldehydes ent-3a–ent-3d were obtained in good yields with 99% ee.
To our delight, the reaction was highly syn-selective (>19:1 dr)
when imine 1a was used as the acceptor (entries 1 and 2). In fact,
this is the key transformation for the synthesis of the Taxotere side
chain (Eq. 2). For example, (R)-proline-catalyzed the asymmetric
reaction between imine 1a and benzyl-protected a-oxyaldehyde
2b with high diastereo- and enantioselectivity to give the corre-
sponding orthogonally protected a-oxy-b-amino aldehyde ent-
3b14 in 60% yield with >19:1 dr and 99% ee (entry 2). Moreover,
the reactions were readily scaled up. Next, the a-oxy-b-amino
aldehyde ent-3b was oxidized to the corresponding (2R,3S)-phen-
ylisoserine (Taxotere) side chain 4b3g in high yield (Scheme 1).15

This reaction can also be performed as a one-pot operation.
Notably, the benzyl-protected b-amino-a-hydroxy acid 4b is

esterification-ready for reaction with 10-deacetylbaccatin III, an
abundant natural product obtained from the yew tree, which after
deprotection gives Taxotere (Eq. 3).3g
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On the basis of the absolute configuration, we propose transi-
tion-state model I to account for the diastereo- and enantioselec-
tivity of the (R)-proline-catalyzed formation of a-oxy-b-amino
aldehydes 3 (Fig. 1). Hence, the (R)-proline forms an enamine with
the aldehyde, which is attacked by the N-Boc-protected imine from
its Re-face providing (2R,3S)-b-amino-a-hydroxy acid derivatives.
This is in accordance with the opposite established transition
states of previously reported (S)-proline-catalyzed Mannich reac-
tions5,6 with a-oxyaldehydes.8

In summary, we have reported a simple, highly enantioselec-
tive, organocatalytic asymmetric Mannich-type reaction with
a-oxyaldehydes as nucleophiles and Boc-protected imines as
acceptors. The corresponding orthogonally protected a-oxy-b-ami-
noaldehydes were formed in good yields with 99% ee. The impor-
tance of this transformation as an entry to the synthesis of
a-hydroxy-b-amino acids was further exemplified by the highly
stereoselective (>19:1 dr, 99% ee) synthesis of the esterification-
ready Taxotere side chain. Further elaboration of this novel
transformation in total synthesis as well as mechanistic studies is
ongoing in our laboratory.
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